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ON CONSTRUCTIONS OF MINIMAL SURFACES

Dae Won Yoon

Abstract. In the recent papers, Sánchez-Reyes [Appl. Math.
Model. 40 (2016), 1676–1682] described the method for finding
a minimal surface through a geodesic, and Li et al. [Appl. Math.
Model. 37 (2013), 6415–6424] studied the approximation of mini-
mal surfaces with a geodesic from Dirichlet function. In the present
article, we consider an isoparametric surface generated by Frenet
frame of a curve introduced by Wang et al. [Comput. Aided Des.
36 (2004), 447-459], and give the necessary and sufficient condi-
tion to satisfy both geodesic of the curve and minimality of the
surface. From this, we construct minimal surfaces in terms of con-
stant curvature and torsion of the curve. As a result, we present
a new approach for constructions of the minimal surfaces from a
prescribed closed geodesic and unclosed geodesic, and show some
new examples of minimal surfaces with a circle and a helix as a
geodesic. Our approach can be used in design of minimal surfaces
from geodesics.

1. Introduction

Geometers have been interested in studying minimal surfaces and
geodesics for a long times. A minimal surface is a surface with vanishing
mean curvature. As the mean curvature is the variation of area func-
tional of a surface, and minimal surfaces include the surfaces minimizing
the area with a fixed boundary. Because of their appealing properties,
minimal surfaces have been spiritedly studied in many research areas.
In mathematics, the surfaces have wide applications in a surface design
[4, 7, 9, 10, 11]. In physics, minimal surfaces are familiar as soap films.
Besides the obvious application of a minimal surface theory to the study
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of soap films, there are a number of other physical systems in which the
theory of minimal surfaces has a sometimes surprising applicability.

On the other hand, geodesics are curves on surfaces that plays a role
analogous to straight lines in the plane. It is well known that great
circles are geodesics on a sphere, and parallels (circles) and helices are
geodesics on a circular cylinder. But ordinary helices on a helicoid are
not geodesics, and parallel curves (circles) on a surface of revolution
are not also always geodesics. Based on these facts, Tamura [12, 13]
considered a helical geodesic on a surface, and he showed that complete
surfaces of a constant mean curvature on which there exist two helical
geodesics through each point are planes, spheres or circular cylinders.
The above mentioned statement is an important role for our results in the
paper, because we suggest minimal surfaces contained circles or helices
as a geodesic. As applications for geodesics, Munchmeyer and Haw [8]
were the first to introduce the geodesic to the CAGD community. They
applied the geodesic in ship design, namely to find out the precise layout
of the seams and butts in the ship hull. Also, in [3] Haw was first defined
an operative sail shape by using patched parametric surface and gave
the method for a sail design with a geodesic.

The study of combining minimal surfaces and geodesics appear at-
tractive and are used many areas. In [7] Li, Wang and Zhu are men-
tioned that a geodesic is an important curve in a practical application,
especially in shoe design and garment design, and they gave examples
for approximation minimal surfaces with a geodesic by using Dirichlet
function. Also, in [10] Sánchez-Reyes justified why minimal surfaces and
the problem of finding the surface with minimal area have little to do
with garment design. And he examined construction method of a mini-
mal surface from a prescribed geodesic and drew minimal surfaces with
circle or helix as a geodesic. Moreover, Sánchez-Reyes and Dorado [11]
presented a practical method to construct polynomial surfaces from a
polynomial geodesic by prescribing tangent ribbons, and Riverros and
Corro [9] classified GICM-surfaces, defined by the class of minimal sur-
faces with an isothermal coordinate and a family of geodesic coordinate
curves. Several mathematicians are studying minimal surfaces passing
through geodesics [5, 6, 7, 9, 10, 16], etc. Also, geodesics and minimal
surfaces are widely used for medical image segmentation [1, 2].

The paper is arranged as follows. In Section 2, after briefly reviewing
some fundamental concepts of a parametric surface worked by [14] we
give minimal conditions for an isoparametric minimal surface in terms
of the marching-scale functions. As a result, in Section 3 we present a
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new approach for minimal surfaces from a given curve, in particular, a
circle and a helix, and give some examples. In Section 4 we explain how
to construct minimal surfaces passing through a geodesic, and give new
examples for minimal surfaces.

2. Conditions of minimal surfaces

Let γ be a curve parametrized by arc-length s in Euclidean 3-space
E3. Denote by {T,N,B} the Frenet frame of a curve γ and κ, τ the
curvature and the torsion of γ, respectively.

Consider a parametric surface generated by the curve γ and its Frenet
frame as following

(2.1)
X(s, t) = γ(s) + (f(s, t) g(s, t) h(s, t))

 T (s)
N(s)
B(s)

 ,

s1 ≤ s ≤ s2, t1 ≤ t ≤ t2,

where f(s, t), g(s, t) and h(s, t) are smooth functions.

If the parameter t is seen as the time, f(s, t), g(s, t) and h(s, t) can be
viewed as directed marching distances of a point unit at the time t in the
directions T (s), N(s) and B(s), respectively. Sometimes, f(s, t), g(s, t)
and h(s, t) are said to be the marching-scale functions in the directions
T (s), N(s) and B(s), respectively. Some known simple examples are to
be mentioned, namely

1. If we take the marching-scale functions as f(s, t) = g(s, t) =
h(s, t) = t, then the parametric surface X(s, t) is a ruled surface.

2. If γ is a circle and f(s, t) = 0, g(s, t) = g̃(t), h(s, t) = h̃(t), then
the parametric surface X(s, t) is a usual surface of revolution.

3. If the marching-scale functions are given by

f(s, t) = −r(s)r′(s),

g(s, t) = −r(s)
√

1− r′(s) cos t,

h(s, t) = r(s)
√

1− r′(s) sin t

with a smooth function r(s), then the surface is a canal surface.
In particular, if r is constant, the surface is a tubular surface.

In [14], authors defined an isogeodesic to construct a family of surfaces
from a given spatial geodesic curve.
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Definition 2.1. A curve γ(s) on the parametric surface X(s, t) de-
fined by (2.1) is called an isoparametric curve if there exists a time t0
such that γ(s) = X(s, t0).

Definition 2.2. A curve γ(s) on the surface X(s, t) is said to be
isogeodesic of X(s, t) if it is both an isoparametric curve and a geodesic
on X(s, t).

For the better analysis of a parametric surface, we now consider the
marching-scale functions f(s, t), g(s, t) and h(s, t) are expressed by

(2.2) f(s, t) = u(t), g(s, t) = v(t), h(s, t) = w(t),

where u(t), v(t), w(t) are smooth functions.

Lemma 2.3. ([14]) A curve γ(s) on the parametric surface X(s, t)
given by (2.1) with the marching-scale functions given by (2.2) is an
isogeodesic if and only if the following conditions are satisfied

(2.3)

u(t0) = v(t0) = w(t0) = 0,

w′(t0) 6= 0,

v′(t0) = 0,

where the prime is derivative with respect to t.

Definition 2.4. If X(s, t) satisfies E = G and F = 0, then X(s, t)
is called a isothermal surface, where E,F and G denote the coefficients
of the first fundamental form of a surface X(s, t).

Definition 2.5. If X(s, t) satisfies ∂2X
∂s2

+ ∂2X
∂t2

= 0, then X(s, t) is
called a harmonic surface.

Definition 2.6. If X(s, t) has a vanishing mean curvature, then
X(s, t) is called a minimal surface.

Lemma 2.7. ([15]) The surface with an isothermal parameter is min-
imal if and only if it is a harmonic surface.

Now, we give the minimal conditions of the parametric surface X(s, t)
with the marching-scale functions given as (2.2). Also, the following
theorem is useful for our results.

Theorem 2.8. Let γ be a unit speed isoparametric curve on a surface
in Euclidean 3-space. The surface parametrized by

(2.4) X(s, t) = γ(s) + u(t)T (s) + v(t)N(s) + w(t)B(s)
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is minimal if and only if there exist the marching-scale functions u, v
and w satisfying the following conditions:

(2.5)
(1− κ(s)v(t))2 + (κ(s)u(t)− τ(s)w(t))2 + τ2(s)v2(t)

−u′2(t)− v′2(t)− w′2(t) = 0.

(2.6) u′(t)(1−κ(s)v(t))+v′(t)(κ(s)u(t)−τ(s)w(t))+τ(s)v(t)w′(t) = 0.

(2.7) κ′(s)u(t) + κ2(s)u(t)− κ(s)τ(s)w(t)− u′′(t) = 0.

(2.8) κ′(s)u(t)− τ ′(s)w(t) + κ(s)− κ2(s)v(t)− τ2(s)v(t) + v′′(t) = 0.

(2.9) τ ′(s)v(t) + κ(s)τ(s)u(t)− τ2(s)w(t) + w′′(t) = 0.

Proof. From the surface equation (2.4), we have

∂X

∂s
= (1− κ(s)v(t))T (s) + (κ(s)u(t)− τ(s)w(t))N(s) + τ(s)v(t)B(s),

∂X

∂t
= u′(t)T (s) + v′(t)N(s) + w′(t)B(s).

It follows that the coefficients of the first fundamental form of the surface
are
(2.10)
E = (1− κ(s)v(t))2 + (κ(s)u(t)− τ(s)w(t))2 + τ2(s)v2(t),

F = u′(t)(1− κ(s)v(t)) + v′(t)(κ(s)u(t)− τ(s)w(t)) + τ(s)v(t)w′(t),

G = u′2(t) + v′2(t) + w′2(t).

Also, the second derivatives of the surface X(s, t) are given by
(2.11)
∂2X

∂s2
=
[
−κ′(s)u(t)− κ2(s)u(t) + κ(s)τ(s)w(t)

]
T (s)

+
[
κ′(s)u(t)− τ ′(s)w(t) + κ(s)− κ2(s)v(t)− τ2(s)v(t)

]
N(s)

+
[
τ ′(s)v(t) + κ(s)τ(s)u(t)− τ2(s)w(t)

]
B(s),

∂2X

∂t2
= u′′(t)T (s) + v′′(t)N(s) + w′′(t)B(s).

From an isothermal condition, equation (2.10) gives (2.5) and (2.6).

Also, a harmonic equation ∂2X
∂s2

+ ∂2X
∂t2

= 0 implies (2.7), (2.8) and (2.9).
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In order to construct minimal surfaces, we have to solve the above
system of ordinary differential equations. But, it is difficult to find exact
solutions satisfying (2.5)-(2.9) for minimal surfaces. In this paper, our
goal is to find a helix as a geodesic on a minimal surface. So we consider
the partial solutions of minimality conditions of Theorem 2.8 in terms
of constant curvature κ(s) and torsion τ(s).

3. Constructions of minimal surfaces generated by curves

Let γ be a unit speed curve in Euclidean 3-space and X be a surface
parametrized by

(3.1) X(s, t) = γ(s) + u(t)T (s) + v(t)N(s) + w(t)B(s).

Now, in order to obtain our results we split it into two cases according
to constant curvature and torsion.

3.1. γ is a circle

Suppose that a curve γ has a non-zero constant curvature κ = k0 and
a zero torsion. Then, from (2.7), (2.8) and (2.9) we can obtain

(3.2)

u(t) = a1e
k0t + a2e

−k0t,

v(t) = b1e
k0t + b2e

−k0t +
1

k0
,

w(t) = c1t+ c2

for constants ai, bi, ci, i = 1, 2.
Substituting (3.2) into (2.5) and (2.6) we have the relationship as

(3.3) 4k20(a1a2 + b1b2)− c21 = 0,

(3.4) a1b2 − a2b1 = 0,

respectively.
Since γ has a non-zero constant curvature k0 and a zero torsion, γ is

a circle. By a rigid motion, we consider γ parametrized by

(3.5) γ(s) =

(
1

k0
cos(k0s),

1

k0
sin(k0s), 0

)
.

Then the Frenet frame of the circle is given by

(3.6)

T (s) = (− sin(k0s), cos(k0s), 0) ,

N(s) = (− cos(k0s),− sin(k0s), 0) ,

B(s) = (0, 0, 1).
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1. If c1 = 0, we get w(t) = c2. In this case, the isoparametric surface
X can be expressed as

X(s, t) =

 ( 1
k0
− v(t)) cos(k0s)− u(t) sin(k0s))

( 1
k0
− v(t)) sin(k0s) + u(t) cos(k0s)

c2


that is, the surface is a plane.

Now, we study non-planar minimal surface, that is, c1 6= 0.
2. If b1 = 0, from (3.4) one find a1 = 0 or b2 = 0. If a1 = 0, from

(3.3) c1 = 0, a contradiction. Thus, b2 = 0. From this, equation
(3.2) deduced as the form:

(3.7)

u(t) = a1e
k0t + a2e

−k0t,

v(t) =
1

k0
,

w(t) = c1t+ c2,

which implies that the surface is parametrized as

X(s, t) = (−d1 cosh(k0t+ d2) sin(k0s), d1 cosh(k0t+ d2) cos(k0s), c1t+ c2) ,

where d1, d2 are constant. By a rigid motion, the surface is ob-
tained by rotating the curve y = d cosh(k0z) in the yz-plane around
the z-axis and it is a catenoid.

On the other hand, (3.3) and (3.4) are symmetric about a1, a2
and b1, b2. So, in the other case, that is, a1 = 0 the surface is a
catenoid.

3. If a1, a2, b1, b2 are non-zero constant, equation (3.4) implies

a2 = a1r0, b2 = b1r0

for non-zero constant r0. Also equation (3.3) becomes

4κ20(r0a
2
1 + r0b

2
1)− c21 = 0,

it follows that the constant r0 must be positive. We put

q20 = r0a
2
1 + r0b

2
1

for a non-zero constant q0. Then we get

a1 =
q0√
r0

cos θ0, b1 =
q0√
r0

sin θ0.
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From this, the marching-scale functions u, v and w are written as

u(t) = q0
√
r0 cos θ0(e

k0t + e−k0t) = 2q0
√
r0 cos θ0 cosh(k0t),

v(t) = q0
√
r0 sin θ0(e

k0t + e−k0t) +
1

k0
= 2q0

√
r0 sin θ0 cosh(k0t) +

1

k0
,

w(t) = 2κ0q0t+ c2.

If a circle γ is given by (3.5), a minimal surface X(s, t) passing
through γ(s) can be expressed as the form

X(s, t) =
(
p0 cosh(k0t) cos(s+

π

4
), p0 cosh(k0t) sin(s+

π

4
), 2k0q0t+ c2

)
,

where p0 = q0
√
r0 cos θ0. This means that the surface is a catenoid.

Thus, we have

Theorem 3.1. Let X be a surface parametrized by

(3.8) X(s, t) = γ(s) + u(t)T (s) + v(t)N(s) + w(t)B(s).

If the surface X passing through a circle γ with a non-zero constant
curvature k0 is minimal, then it is either part of a plane or part of a
catenoid.

Remark 3.2. It is well known that a minimal surface of revolution
is either part of a plane or part of a catenoid. So, the surface X(s, t)
given by (3.8) passing through a circle is a surface of revolution.

3.2. γ is a helix

Suppose that a curve γ has non-zero constant curvature κ0 and tor-
sion τ0. Equation (2.9) implies

(3.9) u(t) =
1

κ0τ0

(
−w′′(t) + τ20w(t)

)
.

If we substitute (3.9) in (2.7), one find

w(4)(t)− (κ20 + τ20 )w′′(t) = 0,

its general solution is

(3.10) w(t) = c1e
m0t + c2e

−m0t + c3t+ c4,

where m2
0 = κ20+τ20 and ci (i = 1, ..., 4) are constant. Substituting (3.10)

into (3.9), a function u is given by

(3.11) u(t) = −κ0
τ0

(
c1e

m0t + c2e
−m0t

)
+ c3

τ0
κ0
t+ c4

τ0
κ0
.
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Since (2.8) is the second order linear differential equation, we can solve
it, and so its general solution is

(3.12) v(t) = b1e
m0t + b2e

−m0t +
κ0
m2

0

.

If we substitute (3.10), (3.11) and (3.12) into (2.5) and (2.6), we can
check that the coefficients of em0t and e−m0t are zero. Thus from the
constant terms of (2.5) and (2.6) we obtain

(3.13) c23m
4
0τ

2
0 − 4b1b2m

4
0κ

2
0τ

2
0 − 4c1c2m

6
0κ

2
0 − κ20τ40 = 0,

(3.14) c3τ
2
0 + 2m3

0κ0(b2c1 − c2b1) = 0,

respectively. Thus, we have

Theorem 3.3. Let X be a surface parametrized by

(3.15) X(s, t) = γ(s) + u(t)T (s) + v(t)N(s) + w(t)B(s).

If the surface X passing through a helix γ with a non- zero constant
curvature κ0 and a torsion τ0 in Euclidean 3-space is minimal, then the
marching-scale functions u, v and w are expressed as the form:

(3.16)

u(t) = −κ0
τ0

(
c1e

m0t + c2e
−m0t

)
+ c3

τ0
κ0
t+ c4

τ0
κ0
,

v(t) = b1e
m0t + b2e

−m0t +
κ0
m2

0

,

w(t) = c1e
m0t + c2e

−m0t + c3t+ c4,

where m2
0 = κ20 + τ20 and constants b1, b2, ci (i = 1, .., 4) satisfy the

following

(3.17)
c23m

4
0τ

2
0 − 4b1b2m

4
0κ

2
0τ

2
0 − 4c1c2m

6
0κ

2
0 − κ20τ40 = 0,

c3τ
2
0 + 2m3

0κ0(b2c1 − c2b1) = 0.

Remark 3.4. There are infinite numbers of minimal surfaces passing
through a helix for constants b1, b2, ci (i = 1, .., 4).

Example 3.5. Consider a helix parametrized by

(3.18) γ(s) =

(
1√
2

cos s,
1√
2

sin s,
1√
2
s

)
.
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Then we have the Frenet frame of the curve as

(3.19)

T (s) = (− 1√
2

sin s,
1√
2

cos s,
1√
2

),

N(s) = (− cos s,− sin s, 0),

B(s) = (
1√
2

sin s,− 1√
2

cos s,
1√
2

),

and the curvature κ and the torsion τ are given by κ = 1√
2
and τ = 1√

2
,

respectively, it follows that m2
0 = 1. Now, to construct a minimal surface

we take

b1 = −b2 =
1

4
, c1 = −c2 =

1

4
√

2
, c3 = c4 = 0.

In this case, the marching-scale functions u, v and w are written as

u(t) = − 1

2
√

2
sinh t,

v(t) =
1

2
sinh t+

1√
2
,

w(t) =
1

2
√

2
sinh t.

From this, the minimal surface X passing through the helix γ can be
parametrized as

X(s, t) =

(√
3

2
sinh t sin(s+ θ0),

√
3

2
sinh t cos(s+ θ0),

1√
2
s

)
,

where cos θ0 = 1√
3
and the surface X is a helicoid.

Example 3.6. Considering a helix given by (3.18) and taking

b1 = b2 = 1, c1 =
3

4
√

2
, c2 = 0, c3 = −3

2
, c4 = 0.

Then, the marching-scale functions u, v and w are

u(t) = − 3

4
√

2
et − 3

2
t,

v(t) = 2 cosh t+
1

2
,

w(t) =
3

4
√

2
et − 3

2
t,
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it follows that the minimal surface X passing through the helix γ can
be parametrized as

X(s, t) =

 −2 cosh t cos s+ 3
4e
t sin s

−2 cosh t sin s− 3
4e
t cos s√

2
2 s−

3
√
2

2 t



4. Representation of minimal surfaces with a geodesic

In this section, we consider a minimal surface parametrized by

(4.1) X(s, t) = γ(s) + u(t)T (s) + v(t)N(s) + w(t)B(s)

passing through a curve γ, and in particular construct the minimal sur-
faces passing through a circle (closed geodesic) and a helix (unclosed
geodesic).

4.1. Minimal surfaces with a circle as a closed geodesic

Let X be a minimal surface passing through a circle γ. Suppose
that a circle γ(s) on a surface X(s, t) is a geodesic. Then the geodesic
condition (2.3) with the help of (3.2) implies

(4.2)

a2 = −a1e2κ0t0 ,

b1 = − 1

2κ0
e−κ0t0 , b2 = − 1

2κ0
eκ0t0 ,

c1 6= 0, c2 = −c1t0.

If we substitute (4.2) into (3.4), we can obtain a1 = 0 and a2 = 0, that
is, a function u is identically zero. Also, combining (3.3) and (4.2) one
find c1 = ±1. Thus, (3.2) reduces to

u(t) = 0,

v(t) = − 1

2κ0

(
e−κ0t0eκ0t + eκ0t0e−κ0t

)
+

1

κ0
,

w(t) = ±t∓ t0.

Thus, we have

Theorem 4.1. Let X be a surface parametrized by

(4.3) X(s, t) = γ(s) + u(t)T (s) + v(t)N(s) + w(t)B(s).
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If the surface X passing through a circle γ with a non- zero constant
curvature κ0 in Euclidean 3-space is minimal and the circle γ is a geo-
desic on the minimal surface at t = t0, then the marching-scale functions
u, v and w are expressed as the form:

u(t) = 0,

v(t) = − 1

2κ0

(
e−κ0t0eκ0t + eκ0t0e−κ0t

)
+

1

κ0
,

w(t) = ±t∓ t0.

Example 4.2. Consider a circle γ with radius 1. Then for t0 = 0
the minimal surface X(s, t) passing through the circle as a geodesic is
parametrized as

X(s, t) = (cosh t cos s, cosh t sin s, t) .

Remark 4.3. (1) The surface in Example 4.2 is a catenoid. It is
well-known that a parallel t = t0 on the catenoid is a geodesic if and
only if df

dt = 0 when t = t0, that is, t0 is a stationary point of f , where
f(t) = cosh t. Thus a parallel t0 = 0 is a geodesic on the catenoid.

(2) Usually, a catenoid is obtained by rotating the curve x = cosh z
in the xz-plane around the z-axis and is one of surfaces of revolution.
As a new approach of the catenoid, the surface can be explained as the
form:

X(s, t) = γ(s) + v(t)N(s) + w(t)B(s),

where γ is a circle with radius 1 and N,B are the principal normal vector
and the binormal vector of the circle, respectively. Here the functions v
and w are given by v(t) = − cosh t+ 1 and w(t) = t.

4.2. Minimal surfaces with a helix as a unclosed geodesic

If a curve γ is a geodesic on the minimal surface passing through a
helix, then the geodesic condition (2.3) with the help of (4.6) implies

(4.4)

κ0
τ0

(
c1e

m0t0 + c2e
−m0t0

)
− c3

τ0
κ0
t0 − c4

τ0
κ0

= 0,

b1e
m0t0 + b2e

−m0t0 +
κ0
m2

0

= 0,

c1e
m0t0 + c2e

−m0t0 + c3t0 + c4 = 0,

b1e
m0t0 − b2e−m0t0 = 0,

c1m0e
m0t0 − c2m0e

−m0t0 + c3 6= 0.
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The first and the third equations in (4.4) imply c3t0 + c4 = 0, and the
second and the forth equations give

b1 = − κ0
2m2

0

e−m0t0 , b2 = − κ0
2m2

0

em0t0 .

Since c3t0 + c4 = 0, from the third equation in (4.4) we get

c2 = −e2m0t0c1.

Using the above data, the second equation gives

c3 =
2m0κ

2
0

τ20
em0t0c1,

and the first equation with the help of constants b1, b2, c3 implies

c1 = ± τ20
2m3

0

e−m0t0 .

Consequently, we have the following result.

Theorem 4.4. Let X be a surface parametrized by

(4.5) X(s, t) = γ(s) + u(t)T (s) + v(t)N(s) + w(t)B(s).

If the surface X passing through a helix γ with a non- zero constant
curvature κ0 and torsion τ0 in Euclidean 3-space is minimal and the helix
γ is a geodesic on the minimal surface at t = t0, then the marching-scale
functions u, v and w are expressed as the form:
(4.6)

u(t) = −κ0
τ0

(
± τ20

2m3
0

e−m0t0em0t ∓ τ20
2m3

0

em0t0e−m0t

)
± κ0τ0

m2
0

t∓ κ0τ0
m2

0

t0,

v(t) = − κ0
2m2

0

(
e−m0t0em0t + em0t0e−m0t

)
+
κ0
m2

0

,

w(t) = ± τ20
2m3

0

e−m0t0em0t ∓ τ20
2m3

0

em0t0e−m0t ± κ20
m2

0

t∓ κ20
m2

0

t0.

Example 4.5. Consider a helix parametrized by (3.18). If the curve
is a geodesic on the minimal surface X(s, t) passing through the helix
γ, then in this case, the marching-scale functions are given by

u(t) = −1

2
(sinh t− t),

v(t) = − 1√
2

(cosh t− 1),

w(t) =
1

2
(sinh t+ t).
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It follows that the minimal surface X(s, t) passing through the helix as
a geodesic is parametrized as

X(s, t) =


1√
2

cosh t cos s+ 1√
2

sinh t sin s
1√
2

cosh t sin s− 1√
2

sinh t cos s
1√
2
s+ 1√

2
t


Remark 4.6. It is well known that a helix on a circular cylinder is

a geodesic. But a circular cylinder is not minimal. Also, a helicoid is a
minimal surface and a helix is not geodesic on a helicoid. According to
our approach, one can find a helix as a geodesic on a minimal surface.

5. Conclusions

Geodesics and minimal surfaces are very interesting topics in differ-
ential geometry and have a wide area of applications in natural sciences.
Geodesics are used in sail design, shoe design and clothing design, etc
and minimal surfaces are familiar as soap films. Also, combination of
geodesics and minimal surfaces, that is, a minimal surface through pre-
scribed geodesic is studied by Sánchez-Reyes [10].

If we use Wang’s[14] isogeodesic parameter surface because of the
Frenet frame of a curve, we describe the minimality condition of the
isogeodesic parameter surface. As a result, we give rise to the minimal
surfaces in terms of the marching-scale functions of the surface. Finally
we construct minimal surfaces passing through closed geodesic(circle)
and unclosed geodesic(helix).
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